Areas of lattice polygons, applied to computer graphics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some methods of computational geometry applied to computer graphics

Windowing a two-dimensional picture means to determine those line segments of the picture that are visible through an axis-parallel window. A study of some algorithmic problems involved in windowing a picture is offered. Some methods from computational geometry are exploited to store the picture in a computer such that (1) those line segments inside or partially inside of a window can be determ...

متن کامل

On convex lattice polygons

Let II be a convex lattice polygon with b boundary points and c (5 1) interior points. We show that for any given a , the number b satisfies b 5 2e + 7 , and identify the polygons for which equality holds. A lattice polygon II is a simple polygon whose vertices are points of the integral lattice. We let A = 4(11) denote the area of II , b{U) the number of lattice points on the boundary of II , ...

متن کامل

On measuring areas of polygons

The measurement of areas and vol umes of sets is a fundamental problem in mathematics and ComputationalGe ometry It is generally accepted that one of the motivations that fueled the development of geometry in early civi lizations was the need to measure land for taxation purposes It is straightforward to see that cal culating areas of polygons in the plane and that volumes of polyherdra in R ca...

متن کامل

Convex Lattice Polygons

Let n ≥ 3 be an integer. A convex lattice n-gon is a polygon whose n vertices are points on the integer lattice Z 2 and whose interior angles are strictly less than π. Let a n denote the least possible area enclosed by a convex lattice n-gon, then [1, 2, 3] {a n } ∞ n=3 = n 1 2

متن کامل

Unfolding Lattice Polygons on Some Lattice Polyhedra∗

We consider the problem of unfolding lattice polygons embedded on the surface of some classes of lattice polyhedra. We show that an unknotted lattice polygon embedded on a lattice orthotube or orthotree can be convexified in O(n) moves and time, and a lattice polygon embedded on a lattice Tower of Hanoi or Manhattan Tower can be convexified in O(n) moves and time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicationes Mathematicae

سال: 1987

ISSN: 1233-7234,1730-6280

DOI: 10.4064/am-19-3-4-547-556